High-Performance Differential Clock Buffer (CTB2310)

Description

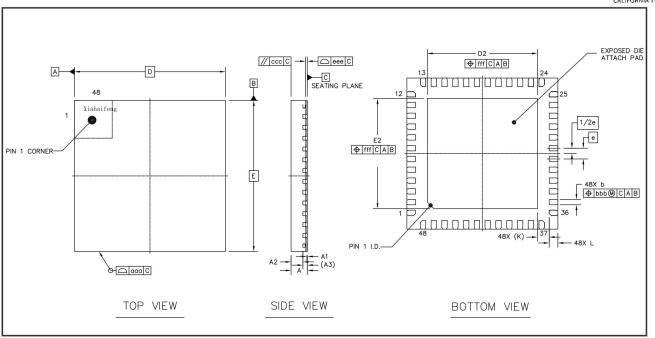
California Triangle provides high-performance, low-noise differential clock buffers for communication, radar, measurement, and industrial control applications. These buffers are designed for high-frequency, low-jitter clock/data distribution and level shifting. The input clock can be selected from two differential inputs or one crystal input. The selected input clock is distributed to two sets of outputs, each set containing five differential outputs and one LVCMOS output with sync functionality. The two differential output groups can be independently configured to LVPECL, LVDS, or HCSL levels, or set to output high impedance. The LVCMOS output features a sync enable input control that generates glitch-free clock output during enable or disable operations. Additional jitter is specified at up to 41 fs.

Product view

CTB2310 Front View

CTB2310 Rear View

Key Performance Indicators


Mode	Frequenc el y Range	Input Level Type	Number of Input Ports	Core Voltage	Output Voltage	Number of Output Ports	Output Level Type	Temperatu re Range	Packagin g
CTB2 10	3 DC~2.1G Hz	LVPECL LVDS HCSL SSTL LVCMOS /LVTTL Crystal Oscillator		3.3V	2.5V 3.3V	11	LVCMOS LVPECL LVDS HCSL	-40~+85°C	QFN48

Functional Diagram

Packaging Diagram

Packaging Information

		SYMBOL	MIN	NOM	MAX		
TOTAL THICKNESS		Α	0.7	0.75	0.8		
STAND OFF	A1	0	0.02	0.05			
MOLD THICKNESS	A2		0.55				
L/F THICKNESS	А3	0.203 REF					
LEAD WIDTH	Ь	0.2	0.25	0.3			
BODY SIZE	×	D	7 BSC				
BOD I SIZE	Y	E	7 BSC				
LEAD PITCH	е	0.5 BSC					
EP SIZE	×	D2	5	5.1	5.2		
LI SIZE	Y	E2	5	5.1	5.2		
LEAD LENGTH	L	0.3	0.4	0.5			
LEAD TIP TO EXPOSED	PAD EDGE	K	0.55 REF				
PACKAGE EDGE TOLERA	aaa	0.1					
MOLD FLATNESS		ccc	0.1				
COPLANARITY		eee	0.08				
LEAD OFFSET		bbb	0.1				
EXPOSED PAD OFFSET		fff	0.1				